由于笔记本电脑整合性高,设计精密,对于内存的要求比较高,笔记本内存必须符合小巧的特点,需采用优质的元件和先进的工艺,拥有体积小、容量大、速度快、耗电低、散热好等特性。出于追求体积小巧的考虑,大部分笔记本电脑最多只有两个内存插槽。对于一般的文字处理、上网办公的需求,安装Windows 98的操作系统,使用128MB内存就可以满足需要了,如果安装的是Windows 2000的操作系统,那么最好128MB+64MB拥有总计192MB以上的内存,如果运行的是Windows XP,那么256MB内存是必须的。由于笔记本的内存扩展槽很有限,因此单位容量大一些的内存会显得比较重要。而且这样做还有一点好处,就是单位容量大的内存在保证相同容量的时候,会有更小的发热量,这对笔记本的稳定也是大有好处的。 笔记本的内存大体可以分为EDO、SDRAM、DDR三种。几大知名内存厂家及代号:现代电子(Hynix):HY ,三星(SAMSUNG):KM或M ,NBM:AAA ,西门子(SIEMENS):HYB ,高士达LG-SEMICON:GM ,三菱(MITSUBISHI):M5M ,富士通(FUJITSU):MB ,摩托罗拉(MOTOROLA):MCM ,MATSUHITA:MN ,OKI:MSM ,美凯龙(MICRON):MT ,德州仪器(TMS):TI ,东芝(TOSHIBA):TD或TC ,日立(HITACHI):HM ,STI:TM ,日电(NEC):UPD ,IBM:BM ,NPNX:NN 。
EDO内存:这种内存主要用于古老的MMX和486机型上面,也有部分厂家在PII的笔记本电脑中仍然使用EDO内存,这种EDO单条最高容量只有64M,而且由于EDO内存的工作电压为5V和现在常用的SDRAM的3.3V相比更费电一些,所以很快就被SDRAM内存所取代。
SDRAM内存:笔记本经历了Pentium时代,CPU的速度已经越来越快,这时Intel公司提出了具有里程碑意义的内存技术----SDRAM。SDRAM的全称是Synchronous Dynamic Random Access Memory(同步动态随机存储器),就象它的名字所表明的那样,这种RAM可以使所有的输入输出信号保持与系统时钟同步。由于SDRAM的带宽为64Bit,因此它只需要一条内存就可以工作,数据传输速度比EDO内存至少快了25%。SDRAM包括PC66、PC100、PC133等几种规格。
DDR内存:顾名思义:Double Data Rate(双倍数据传输)的SDRAM。随着台式机DDR内存的推出,现在笔记本电脑也步入了DDR时代,目前有DDR266和DDR333等规格,现在在主流的采用Pentium4-M、Pentium-M、P4核心赛扬的机器都是采用DDR内存,也有少量的Pentium3-M的机器早早跨入DDR时代。其实DDR的原理并不复杂,它让原来一个脉冲读取一次资料的SDRAM可以在一个脉冲之内读取两次资料,也就是脉冲的上升缘和下降缘通道都利用上,因此DDR本质上也就是SDRAM。而且相对于EDO和SDRAM,DDR内存更加省电(工作电压仅为2.25V)、单条容量更加大(已经可以达到1GB)。
DDR2的定义:
DDR2(Double Data Rate 2) SDRAM是由JEDEC(电子设备工程联合委员会)进行开发的新生代内存技术标准,它与上一代DDR内存技术标准最大的不同就是,虽然同是采用了在时钟的上升/下降延同时进行数据传输的基本方式,但DDR2内存却拥有两倍于上一代DDR内存预读取能力(即:4bit数据读预取)。换句话说,DDR2内存每个时钟能够以4倍外部总线的速度读/写数据,并且能够以内部控制总线4倍的速度运行。
此外,由于DDR2标准规定所有DDR2内存均采用FBGA封装形式,而不同于目前广泛应用的TSOP/TSOP-II封装形式,FBGA封装可以提供了更为良好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了坚实的基础。回想起DDR的发展历程,从第一代应用到个人电脑的DDR200经过DDR266、DDR333到今天的双通道DDR400技术,第一代DDR的发展也走到了技术的极限,已经很难通过常规办法提高内存的工作速度;随着Intel最新处理器技术的发展,前端总线对内存带宽的要求是越来越高,拥有更高更稳定运行频率的DDR2内存将是大势所趋。
DDR2与DDR的区别:
在了解DDR2内存诸多新技术前,先让我们看一组DDR和DDR2技术对比的数据。
1、延迟问题:
从上表可以看出,在同等核心频率下,DDR2的实际工作频率是DDR的两倍。这得益于DDR2内存拥有两倍于标准DDR内存的4BIT预读取能力。换句话说,虽然DDR2和DDR一样,都采用了在时钟的上升延和下降延同时进行数据传输的基本方式,但DDR2拥有两倍于DDR的预读取系统命令数据的能力。也就是说,在同样100MHz的工作频率下,DDR的实际频率为200MHz,而DDR2则可以达到400MHz。
这样也就出现了另一个问题:在同等工作频率的DDR和DDR2内存中,后者的内存延时要慢于前者。举例来说,DDR 200和DDR2-400具有相同的延迟,而后者具有高一倍的带宽。实际上,DDR2-400和DDR 400具有相同的带宽,它们都是3.2GB/s,但是DDR400的核心工作频率是200MHz,而DDR2-400的核心工作频率是100MHz,也就是说DDR2-400的延迟要高于DDR400。
2、封装和发热量:
DDR2内存技术最大的突破点其实不在于用户们所认为的两倍于DDR的传输能力,而是在采用更低发热量、更低功耗的情况下,DDR2可以获得更快的频率提升,突破标准DDR的400MHZ限制。
DDR内存通常采用TSOP芯片封装形式,这种封装形式可以很好的工作在200MHz上,当频率更高时,它过长的管脚就会产生很高的阻抗和寄生电容,这会影响它的稳定性和频率提升的难度。这也就是DDR的核心频率很难突破275MHZ的原因。而DDR2内存均采用FBGA封装形式。不同于目前广泛应用的TSOP封装形式,FBGA封装提供了更好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了良好的保障。
DDR2内存采用1.8V电压,相对于DDR标准的2.5V,降低了不少,从而提供了明显的更小的功耗与更小的发热量,这一点的变化是意义重大的。
DDR2采用的新技术:
除了以上所说的区别外,DDR2还引入了三项新的技术,它们是OCD、ODT和Post CAS。
OCD(Off-Chip Driver):也就是所谓的离线驱动调整,DDR II通过OCD可以提高信号的完整性。DDR II通过调整上拉(pull-up)/下拉(pull-down)的电阻值使两者电压相等。使用OCD通过减少DQ-DQS的倾斜来提高信号的完整性;通过控制电压来提高信号品质。
ODT:ODT是内建核心的终结电阻器。我们知道使用DDR SDRAM的主板上面为了防止数据线终端反射信号需要大量的终结电阻。它大大增加了主板的制造成本。实际上,不同的内存模组对终结电路的要求是不一样的,终结电阻的大小决定了数据线的信号比和反射率,终结电阻小则数据线信号反射低但是信噪比也较低;终结电阻高,则数据线的信噪比高,但是信号反射也会增加。因此主板上的终结电阻并不能非常好的匹配内存模组,还会在一定程度上影响信号品质。DDR2可以根据自已的特点内建合适的终结电阻,这样可以保证最佳的信号波形。使用DDR2不但可以降低主板成本,还得到了最佳的信号品质,这是DDR不能比拟的。
Post CAS:它是为了提高DDR II内存的利用效率而设定的。在Post CAS操作中,CAS信号(读写/命令)能够被插到RAS信号后面的一个时钟周期,CAS命令可以在附加延迟(Additive Latency)后面保持有效。原来的tRCD(RAS到CAS和延迟)被AL(Additive Latency)所取代,AL可以在0,1,2,3,4中进行设置。由于CAS信号放在了RAS信号后面一个时钟周期,因此ACT和CAS信号永远也不会产生碰撞冲突。
总的来说,DDR2采用了诸多的新技术,改善了DDR的诸多不足,虽然它目前有成本高、延迟慢能诸多不足,但相信随着技术的不断提高和完善,这些问题终将得到解决。 |